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On the Theory of Brownian Motion. 
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The equation of evolution governing the probability density of a pair of heavy particles 
in a fluid of lighter particles is derived. The derivation starts from the Liouville equation 
and proceeds by expansion in the ratio of light to heavy masses, using the technique 
previously applied successfully to the singlet distribution. 
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1. I N T R O D U C T I O N  

In conaection with the theory of transport processes in suspensions of heavy particles, 
it is of interest to have the kinetic equation governing the evolution of the distribution 
function of pairs of heavy particles. This is especially important if the physical 
circumstances make it essential to take into consideration the interaction of the heavy 
particles (or B-particles) with each other, as well as with the light particles of  the 
solvent, or carrier fluid. 

In this paper, the equation of evolution for two B-particles in a medium is 
derived from a molecular basis. The technique used is basically that introduced by 
Lebowitz and Rubin (1) for the one-body distribution function at infinite dilution, 
and elaborated on by the present author (21 for the case of the one-body distribution 
function at finite concentration. We consider here  only the case of two B-particles 
in the medium, i.e., two B-particles at infinite dilution. 

2. F O R M A L I S M  

Throughout this paper, we use t he  notation of ref. 2, and do not repeat 
definitions of  symbols defined there. The notation is, in any case, fairly standard. 
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We are considering two 
system is 

pz2 p22 ~ pj2 

J=l 

The Liouville operator is conveniently broken up into two parts 

L : L~ q- LB 

L F = - - - i  W V~-{- f j ' - ~ 7  
j=l 

LB = - - i  k=l , - - ~ -  Vj  @ l~j " 

B-particles in a solvent, and the Hamiltonian of the 

(1) 

(2a) 

(2b) 

(2c) 

We are interested in the reduced distribution function p2, defined in terms of 
the distribution function of the entire system par+2 by 

P2 = f P~+2 d{N) 

Let us define a projection operator P2 by 

P~q~({N q- 2}) ----- pN'{N} f q~({N q- 2}) d{N} 

(3) 

(4) 

where par* is the equilibrium distribution function for the N solvent particles with 
B-particles 1 and 2 present, but fixed in position. The complementary projection 
operator is then Q2 = 1 -- i65. Letting f = P2pN+2 = Par~p2 and g = Q2PN+2, the 
standard projection operator technique (a) yields the following equation for f:  

i ~f/Ot = P~Lf -k P~L exp[--iO2Lt] g(O) 

- -  iP2L f" exp[--iO2L(t -- t')] 02Lf(t -- t') at' (5) 
d o 

At this point, we immediately simplify Eq. (5) by assuming g(0) -= 0. This means that, 
at t = 0, we have chosen the initial state of the system to be that in which the solvent 
is in equilibrium in the instantaneous field of the B-particles. This is quite analogous 
to what has been done in the case of the singlet distribution, and we believe it to be a 
reasonable initial condition for the pair case also. 

A further simplification comes from the immediate recognition that P2Lv = O. 
The first term on the right-hand-side of (5) is then easy to evaluate: 

P2Lf = P2L.f  

_ 

(6) 
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where 

o~ = ~ F,p/a{lv) (7) 

That is, o~ is the equilibrium mean force between two B-particles at infinite dilution, 
a quantity well known from equilibrium theory. Since pu t is an equilibrium distribu- 
tion function, o~ is momentum-independent. 

Now we introduce the hypothesis that the two B-particles have a very large mass 
with respect to the solvent particles and replace the integral on the right side of (5) by 

f~o exp[--iLF(t -- t')] Q2Lf(t -- t') dr' (8) 

This is the leading term in an expansion of the exponential operator in powers of  
~2 = (m/M), the mass ratio. The argument is exactly the same as in the one-body case, 
and we do not repeat it. 

We analyze 02Lf as follows. First note that L~f = 0, since f = PN*Pz. The P2 
does not depend on the fluid variables and LFpN* = 0, by construction. Therefore, 

02Lf = (1 -- P~) LBf 

= pN*L~pz + p2L~pN* - -  pN f f d{N} (pN*L~p2 + p2LBpN t) 

(9) 
8 P~ . VjpN, t P2 ] j = l  

O Pj 
= -- i  I ;  pN'(F; -- o~.)- . (W,. + P2 / 

j = l  

Thus, putting together Eqs. (5), (6), (8), and (9), one finds 

6qP2 ~.  PJ. 
j= l  

O 

i = 1  j = I  

where the average is taken with respect to ON*, and in the dynamical calculation of  
Fi(t'), B-particles 1 and 2 are to be held fixed (similarly to the one-body case). 
I f  we assume, as is usually done on intuitive grounds, that the force correlations 
decay much more rapidly than the distribution function p2 changes, then we may write 

(11) P~ 

where Ntp2 is short for the left side of Eq. (10) and 

o0 

,,,r! 2.1 ---- f (F~(t -- t')[F~(0) -- o~1)* dt' (12) 
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We must make two remarks about ~.2) First of all, by time-reversal invariance 
and the identity of particles, 1 and 2, "~!1~'~2) = ~2~'~z) and -~12~'~2) = ,,21~'~). That is, there are 
only two friction tensors, not four. Secondly, although not explicit in the notation, 
the ~'s depend on R1 -- R2, because R1 and R2 are fixed in their definition. Even in 
an isotropic system, they are not necessarily isotropic tensors, although the symmetry 
of the situation requires that they be diagonal in a coordinate system, one of whose 
axes is in the R~ -- Rz direction (if the forces are spherically symmetrical), and the 
components perpendicular to this direction must be equal. It is also clear intuitively 

r<2) 0 and ~(~)--~ �89 where ~ is the singlet friction that, as I R1 -- R.2i -+ o% -,12 -~ lz 
constant. 

Equations (11) and (12) are the main results of this paper. They provide the 
generalization of the Fokker-Planck equation of ordinary Brownian motion theory 
to pair space. 

3. D I S C U S S I O N  

Equation (11) is, of course, of exactly the structure one would expect from the 
theory of random processes (see Ref. 4, for example). We now have, however, 
a molecular derivation of this equation, with explicit, albeit formal, expressions for 
the coefficients. 

Equations (11) will be very difficult to solve, in general, because the mean forces 
Yi  and the friction coefficients g~) depend on the relative positions of the B-particles. 
Although the equation is linear, it has complicated nonconstant coefficients. Further- 
more, although we have formulas for the g~), it is, at present, a hopeless task to try 
to calculate them from first principles. Neither of these problems is really funda- 
mentally discouraging. One could, for example, try various simple models to estimate 
the ~!2) Once this is done, the differential equation, though perhaps not amenable to 
exact solution, could perhaps be handled by one of the available approximate 
methods. However, these remarks represent suggestions for the direction of future 
work. The application to the calculation of transport coefficients, which, in fact, 
was what led us to consider this problem, will have to await the development of 
methods for handling the equation which has been derived here. 
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